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EXECUTIVE SUMMARY 

A field investigation of wood-framed wall assemblies was conducted to monitor the moisture 

performance of various exterior wall constructions with intentional air leakage and seasonal moisture 

injections between the cladding and sheathing over a 20-month period from November 2013 to June 

2015. The research focused on four specific studies: moisture performance of Extended Plate and Beam 

(EP&B) walls, walls with air leakage versus air sealing, 2x4 walls with various types of exterior insulation, 

and baseline walls insulated with kraft-faced batts and unfaced batts. This report covers the field 

monitoring results and compares the performance of the 10 wall pairs. 

The field study was conducted in a mixed-humid climate located in Upper Marlboro, Md., on the campus 

of Home Innovation Research Labs, located 20 miles east of Washington, D.C. Wall sections with each of 

the cladding systems were investigated in North and South orientations. Over the test period, indoor 

humidity conditions were controlled to 30 to 60 percent RH during the winter heating period. Stud bay 

temperature and humidity conditions were monitored, as was moisture content in the exterior 

sheathings and studs. During this winter portion of the testing, the wood-based components of the wall 

sections indicated moisture levels significantly higher for the stucco, stone, brick, and fiber cement walls 

relative to the walls with vinyl siding with or without exterior insulations. The winter peak moisture 

content in the sheathing for these walls ranged from 20 to 24 percent; higher than the generally 

accepted 20 percent Moisture Content (MC) level for wood products (Drumheller and Carll, 2010). Thus, 

they might have been at risk for moisture problems such as rot and mold growth. 

In this study, the advanced EP&B wall system demonstrated satisfactory moisture performance with 

14 percent as the maximum MC recorded for the OSB sheathing. Also, air sealing did not show 

significant improvement in moisture performance over the EP&B wall assembly. The walls with 

controlled 2 cfm air leakage to the cavity performed significantly worse than the air sealed walls. The 

walls with intentional air leakage also showed greater increases of sheathing MC in year 2 than in year 1. 

The vinyl sided walls with exterior insulation performed better than the walls with unfaced batt 

insulation, no exterior insulation, and a variety of different claddings. But the wall with polyisocyanurate 

(PIC) exterior insulation performed worse than the other walls with expanded polystyrene (EPS), 

extruded polystyrene (XPS), and rockwool exterior insulations. The PIC wall had 21 percent MC in the 

OSB sheathing, which had mold growth potential. Therefore, it’s important to use exterior insulation 

with medium to high water vapor permeance to avoid potential moisture problems if there is no water 

vapor management on the interior side of the wall. With kraft-faced batt insulation in the cavities the 

vinyl sided walls achieved significantly better moisture performance than the similar wall with unfaced 

batt insulation, which had 24 percent MC in the OSB sheathing in the winter. 

Portions of six wall systems – two vinyl baseline walls and four walls with exterior insulations –were 

subjected to moisture injections on each side of the sheathing at the window sill area. Injections of 

water were performed in four discrete week-long experiments spread out over the entire monitoring 

period. Water injections were performed daily at noon over a five-day period. All south facing walls had 

higher moisture increases within the window sills and adjacent OSB sheathing, and quicker drying 

(below 15 percent) than those in north facing walls. Among all six pairs of walls, the walls with PIC 

exterior insulations had the longest drying time in winter due to the low water vapor permeance of the 

PIC material. 
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INTRODUCTION 

Energy-efficient walls built in recent years have higher level of insulation than conventional walls. To 

achieve even higher thermal performance, the walls are air sealed for tightness to avoid air leakage and 

thus reduce undesired heat loss or gain through the walls. The 2012 IECC has been the driving force 

behind this significant shift to creating highly insulated building envelope systems. However, the long-

term moisture performance of these energy-efficient wall systems is not well understood. Moisture may 

accumulate on the wood sheathing and framing due to surface condensation of water vapor and rain 

events. Some wall designs may not have sufficient drying capacity for the condensed water to dissipate. 

The moisture performance of these highly insulated, air-tight walls has increasingly become a concern to 

home builders, owners, designers, architects, and engineers. To alleviate these industry concerns and 

create a reliable pathway for building high performing, air-tight, durable walls without moisture issues, 

it is imperative to have practical design guidance based upon long-term moisture research. 

Climate must always be considered during the wall system design process since every climate has its 

own unique characteristics that impact moisture performance. The mixed-humid climate is defined as a 

region that receives more than 20 inches of precipitation and has less than 5,400 heating degree days 

(base 65°F) annually. In this climate, the average monthly winter temperature is below 45°F. This 

combination of conditions creates a situation where moisture typically migrates from the inside of a wall 

system to the exterior side during the winter. The moisture migration is reversed during the summer. 

These dynamic hygrothermal processes can create significant moisture loads on wall materials and lead 

to durability problems unless the systems are intentionally designed to manage these loads. In addition, 

several new insulation and air sealing techniques have been introduced into the market to meet the 

new demand for energy-efficient walls. These innovative materials and techniques have vastly different 

moisture characteristics. The long-term impact of these materials used in various climates, and their 

combinations on the durability of wood products in walls is often not well understood. Therefore, the 

design of walls constructed to current specifications and in a specific climate needs to include 

consideration of the ability to manage moisture, in addition to energy efficiency requirements. 

Moisture performance of building envelope systems is not only dependent on design, but also on the 

indoor conditions. The indoor conditions are mostly affected by building occupant behavior, mechanical 

systems performance, and settings. For example, humidifier set-points, plants, standing water, occupant 

density, and their interaction with building tightness all contribute to the moisture load on the building 

structure and consequently the wall systems. However, research on the impact of indoor conditions on 

wall system moisture performance is needed to provide further guidance to achieve robust designs that 

tolerate variabilities in climates.  

The research summarized in this report involved intensive monitoring of two climate controlled test huts 

located in Upper Marlboro, Md. Each test hut was constructed with five pairs of walls (one north- and 

one south-facing), and most of these panels were divided into two sub panels. These test hut walls were 

modular and designed to be removable without destroying the structure. Each wall contained multiple 

sensors to measure the MC of the wood framing or OSB and the temperature and relative humidity in 

the cavity. Both the interior conditions and exterior conditions were also monitored. Among the outdoor 

conditions monitored were temperature, relative humidity, speed and direction of wind, rainfall, solar 

radiation on the roof, driving rain against the walls, and solar radiation on the walls. 
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This research required installation of energy-efficient wall configurations (R20 or R13+R5 exterior 

continuous insulation or higher), with the primary study variables including 2x6 wood framing, exterior 

rigid foam, weather resistive barrier, and bulk air movement through the wall cavity. A new 

conventional 2x4 wall (R13) provided a baseline for analysis of the observed performance of the 

high-R wall systems. 

The remaining walls in the test huts had their drywall, insulation, and sensors removed. These walls 

were examined for damage and, if deemed acceptable for continued observation, re-instrumented with 

sensors and had new fiberglass cavity batt insulation and interior drywall installed 

OBJECTIVE 

The objective of this research was to quantify the field performance of 16 wood-frame wall designs at 

variable indoor winter relative humidity levels. The indoor winter relative humidity maintained between 

30 and 60 percent is similar to the design indoor RH as calculated by the DIN EN 15026 (EN 2007), 

roughly 5 percent RH lower than the standard profile. 

To evaluate the wall performance, MC of the sheathing was measured at multiple locations on a half-

hour basis. The study considered the primary drivers for moisture accumulation in wall assemblies: 

vapor diffusion through the wall layer(s); vapor movement entrained in air movement; and bulk water 

(rain) leakage past the cladding system and the WRB.  

The main objectives of this research were to identify moisture-tolerant design and construction 

practices for high-R wood-frame exterior walls with different types of insulation and air sealing 

methods. 

The specific objectives of this phase of research included: 

1. To conduct a comparative evaluation of the performance of walls constructed with four types of 

exterior insulation materials with a wide range of vapor permeance characteristics;  

2. To quantify the relative impact of vapor diffusion versus air leakage on the MC of the OSB 

sheathing in 2x6 walls during the heating season;  

3. To evaluate the performance of the innovative Extended Plate and Beam (EP&B) wall system 

with two different air sealing configurations; and  

4. To evaluate the impact of reduced interior relative humidity levels on the performance of walls 

without a kraft vapor retarder in Climate Zone 4. 

TECHNICAL APPROACH 

A pair of 4'x9' sub-panel walls for each of the 16 designs was installed in a test hut constructed on the 

Home Innovation Research Labs campus. The interior of the hut was climate-controlled to simulate 

indoor conditions, while the exterior cladding was exposed to ambient conditions. Detailed 

measurements of indoor and outdoor environmental conditions and the MC of studs and sheathing 

were used to determine hygrothermal performance of each assembly. 
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Six wall sections were subjected to four (seasonal) simulated water intrusion events. Water intrusion 

events were simulated by injecting 30 milliliters of water behind the cladding system through each of 

two ¼-inch hoses each day for five consecutive days. The hoses terminated on opposite sides of the 

OSB; one terminated on the window sill along a cut in the OSB, and the other terminated between the 

WRB and the sheathing into a bladder. The moisture sensors in the OSB detected any accumulation of 

water in the sheathing; readings over time indicated the wall assemblies’ ability to dissipate moisture. 

TEST STRUCTURE CONSTRUCTION 

The test structures were constructed on the grounds of Home Innovation Research Labs in Upper 

Marlboro, Md., approximately 20 miles east of Washington, D.C. The structures are a post-and-beam 

design, with a nominal footprint of 8'x48' (Figure 1). The hut design allowed for five pairs of 8'x9' wall test 

panels to be installed as exterior wall sections, with one panel of each pair having southern exposure and 

the other panel of the pair having northern exposure. The 8'x9' test panels were typically framed with 2x4 

studs, sheathed with wood structural panels. The panels included various combinations of cladding, 

exterior insulation, and drainage strategies, which are described in the following section of this report. A 

window is located on the west end of the hut and an entrance door is located on the east end. Eight-foot 

on-center post spacing allows for insertion and removal of test specimens for subsequent testing. The 

huts’ interiors were finished with ½-inch drywall and wall cavities were insulated with fiberglass batts. The 

perimeter of each wall panel was sealed to minimize extraneous air infiltration. 

 

Figure 1. South Facing Walls of Test Structures 1 (right) and 2 (left) 

The floors are located approximately 30 inches above grade and insulated with R-19 fiberglass batt 

insulation. The roof is shingled on 4/12 pitch trusses and insulated to R-30 at the attic ceiling interface. 

Roof overhang was limited to the 4-inch gutter; test panel exteriors therefore had appreciable exposure 

to the weather. Gable end walls were clad with horizontal lap vinyl siding over a WRB and OSB. All 

products were installed in accordance with manufacturer recommendations or, if recommendations 

were unavailable, in accordance with the prevailing building code (2003 IRC). 

Two portable air conditioners limited the maximum interior summer temperature to 78°F and resistance 

heat maintained indoor temperature in the winter at 70°F. A humidifier maintained indoor relative 

humidity between 30 and 60 percent in the winter months, based on European Standard DIN EN 15026 

(EN 2007). 
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FIELD TEST WALL ASSEMBLIES 

The nominal dimensions of the specimens are 9 feet tall by 4 feet wide. Walls were constructed with 

2x4, 2x6, or a combination of both with studs spaced 16" o.c. The lumber was SPF grade 2. All specimens 

used fiberglass batt cavity insulation and several specimens also included R5 or R10 insulation exterior 

to the wall cavity and installed over or behind the OSB sheathing. A typical framing layout for two 

adjacent specimens is shown in Figure 2. The 4'x9' segments were framed in an identical manner 

containing three stud bays and the lower framing of a false window in the center bay. To simplify the 

construction, adjacent test specimens of identical thickness were constructed as a single 8'x9' wall with 

continuous top and bottom plates and a double center stud. 

 

Figure 2. Typical Construction of Two Adjacent Test Wall Specimens 

 
The perimeter edges between the specimens in the test huts for each of the 10 pairs of walls installed 

were sealed with spray foam and caulk. The vertical joints between the two abutting studs in adjacent 

test specimens were also sealed. All vertical seams between the OSB sheathing and the wall framing 

were sealed so that air movement could occur only at plates (unless sealed for a specific configuration in 

accordance with the test matrix). 

The 16 wall panel designs evaluated in the study are outlined in Table 1. The (4'x9') panels included vinyl 

siding, synthetic stone cladding, stucco, fiber cement siding, and brick. 
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RESEARCH FOCUS 

There were four areas of focus for this research.  

1. Extended Plate and Beam Wall (EP&B) 

The EP&B advanced wall design, diagramed in Figure 3, 

relies on common construction methods and materials. 

However, this unique design integrates the foam 

sheathing into a conventional walls system in a manner 

that provides continuous structural backing for siding 

attachment and relies on wood structural panels nailed 

directly to framing for shear resistance. 

The design features include: 

 Reduced thermal shorts due to framing members 

 Rigid foam insulation is set to the inside of the 

structural sheathing for ease of siding 

attachment and nailed directly to extended top 

and bottom plates to provide shear load 

resistance 

 Clear drainage plane and flashing surface for 

window and door openings 

 Cold surface exterior sheathing capable of drying 

to exterior and limited exposure from interior 

moisture diffusion 

 Flexible in the selection of wall cavity and foam 

sheathing materials 

 Flexible in the use of framing combinations for 

optimum overall wall thermal resistance 

 In both pairs of test wall panels in Hut 2, panel 1B had air sealing using spray foam sealant 

between the exterior surfaces of 2x4 studs/top plate and the foam sheathing material. Panel 1A 

did not have spray foam sealing between the 2x4 wood members and the foam sheathing. 

Because the MC sensors (by Omnisense) were installed on the interior face of the OSB, which in the case 

of the EP&B wall were flush with the face of the 2” XPS foam, small pockets were carved out in the foam 

to accommodate the sensors. The pockets were approximately 1-inch deep. To make up for the lack of 

insulation at the area where the sensors were located, a 1-inch thick foam block extending beyond the 

pocket one inch in all directions was attached to the back side of the foam board centered on the sensor 

locations. The 1-inch blocks were glued to the foam panel only at the block’s perimeter edges such that 

there was no air leakage between the foam block and the foam and panel, yet there was additional 

vapor diffusion resistance introduced between the foam block and the foam panel. 

2x6 Top Plate

2x4 Top Plate

2" Rigid Foam Board

Vinyl Siding

7
16" Wood Structural

Sheathing

2x6 Bottom Plate

2x4 @ 16" o.c. Studs

SUBFLOOR

2x6 Top Plate

2x4 Top Plate

2" Rigid Foam Board

Vinyl Siding

7
16" Wood Structural

Sheathing

2x6 Bottom Plate

2x4 @ 16" o.c. Studs

SUBFLOOR

Figure 3. Extended Plate and Beam Wall Detail 
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2. Air Leakage versus Vapor Diffusion 

The walls for air leakage versus water vapor diffusion (no air leakage) were sealed with spray foam and 

caulk to control the air flow through the cavities. The control specimen (Hut 1-Wall 2A) was sealed to 

prevent any air from either entering or escaping the cavity. Both the drywall and the OSB were sealed to 

the framing members. 

For the specimens with controlled leakage levels (Hut 1-Walls 2B and 4B), the wall had tubes 

penetrating through the drywall at the top of each of the three stud bays as shown in Figure 4. Three 

1/4-inch tubes were combined into a single tube exhausting the cavity air to the outside through the 

floor of the test hut. This tube was equipped with an orifice plate to measure air flow rate and a fan with 

a speed control to draw air through the wall cavity at a specific rate. The pressure drop across the orifice 

plate was continuously monitored in order to record the flow rate through the wall cavities at all times. 

Air was only allowed to enter the cavity through the unsealed bottom edge of the drywall which was 

gapped with a 1/32-inch shim and only allowed to exit through the tube at the top of each stud bay. Any 

other potential entry or exit points for air were sealed. A hole simulating a wire chase was drilled 

through the two interior studs to alleviate any pressure difference across the three bays. The fourth 

scenario (Hut 1-Wall 4A) was created similar to the controlled leakage with an air gap at bottom of the 

drywall and fully air sealed on the other three sides. It was not controlled mechanically. 

 
Figure 4. Controlled Air Leakage Diagram 

The air flow rates were calibrated to two target house tightness levels – 3 ACH50 and 5 ACH50 for a 

2,000 ft2 house. The resulting air flow rates were 1 cfm or 2 cfm per 4' by 9’ specimen framed with a 2x6 

cavity. The total volume of exhausted air was 6 cfm (less than 1 percent of the hut volume). The 

intentional air flow rates remained the same as originally calibrated during the 20-month monitoring 

period. 
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3. Exterior Insulation 

Four different types of continuous insulation were compared. The thickness of the insulation was 

selected to ensure that the R-Value was 5, so that the biggest difference between the insulating 

properties of these four walls was the permeance of the insulation and the location or existence of an 

additional WRB. The perm values for the different insulation type can be seen in Table 2. 

Table 2. Exterior Insulation Perm Ratings 

Material Perms Additional WRB Locations 

EPS  2.8 Exterior of OSB 

RockWool  30 Exterior of OSB 

PolyISO  0.03 Tape Seams 

XPS  1.0 Tape Seams 

 
4. Impact of Kraft Facing on Batt Insulation 

In the previous study, walls that had kraft-faced batt insulations performed better than walls insulated 

with unfaced batts in regard to OSB MC. The combination of unfaced batts and high indoor relative 

humidity in the last phase led to wall moisture problems. Walls with similar construction but with kraft-

faced batts did not experience these moisture problems. 

For this study the relative humidity in the test huts was kept at a lower level than the previous study. 

The walls that contained unfaced batts in the last study are considered moisture damaged and only have 

a minimal number of sensors installed. The walls that were previously insulated with kraft-faced batts 

had unfaced batts installed in this study. The moisture performance of walls with kraft-faced batt 

insulations was compared to the moisture performance of the walls with unfaced batts at a lower 

relative humidity level. 

FIELD TEST PROCEDURE 

Field testing continued for a total of 20 months. This duration covered two winters and all four seasons 

of weather exposure and a reasonable duration to monitor accumulation and drying moisture cycles of 

all walls on the two test huts. The indoor conditions of the test huts, both temperature and relative 

humidity, were controlled. The indoor relative humidity (RH) followed the European standard DIN EN 

15026 normal occupancy protocol, which is lower than the indoor RH for the previous study 

(ANSI/ASHRAE Standard 160-2009, Home Innovation Research Labs 2013 and Glass, et al. 2015) that 

followed a higher moisture load curve as shown in Figure 5. The test huts were instrumented to 

measure MC of the OSB sheathing and wood framing, relative humidity, and temperature in each bay. 
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Figure 5. Test Hut Indoor Relative Humidity 

1. Test Wall Instrumentation 

Each field wall sensor, as shown in Figure 6, includes two stainless steel screws that secure the device to 

either wood framing or sheathing and penetrate ⅜-inch into the substrate to obtain a conductance 

reading related to substrate MC. The sensors are capable of measuring MC between 7 and 40 percent, 

temperature between -40°F and 185°F, and relative humidity from 0 to 100 percent at programmable 

time intervals. Sensors were gravimetrically calibrated to the SPF studs and OSB sheathing. 

 

Figure 6. Wireless Temperature, Humidity and Wood Moisture Sensor 

Approximately 19 sensors (shown in Figure 7) were installed in each 4'x9' test wall panel. Data was 

transmitted wirelessly from the sensors to a local gateway which transmitted the data to the internet. 

Measurements were conducted on sufficiently short intervals (30 minutes) to allow the correlation 

between the MC in the wall, weather conditions monitored externally, and interior conditions. Standing 

fans were operating inside the hut to minimize temperature stratification. 
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2. Data Acquisition System 

In addition to the net-connected wireless sensors installed 

in the walls, a separate data acquisition/controller system 

(as shown in Figure 8) was installed in each test hut. The 

datalogger was programmed to take readings from indoor 

temperature and humidity and outdoor weather conditions 

every five seconds. This data was averaged or summed, as 

appropriate, every 30 minutes and recorded. The 

datalogger also had control capabilities, and was used to 

control indoor conditions.  

3. Indoor Temperature and Humidity Measurements 

Six type-T thermocouples and two temperature and 

humidity probes measured the temperature and relative 

humidity in the test hut. The temperature and humidity 

probes contained capacitance-type humidity sensors, 

accurate within 2 percent from 0 to 98 percent relative 

humidity, and thermistor-type temperature sensors, 

accurate within 1°F over the range of 14°F to 140°F. 

4. Weather Station 

A weather station was mounted on the test hut roof to 

measure ambient weather conditions. The station  

included an anemometer to measure wind speed and 

direction, a temperature and humidity sensor, a tipping 

bucket rain gauge, and a horizontally installed spectral 

pyranometer to measure solar radiation. 

5. Water Injection 

Plastic tubes were installed into walls 1A and 1B in Hut 1 and 

walls 2A, 2B, 3A, and 3B in Hut 2 during construction to 

facilitate the ability to inject bulk water to a certain layer in 

the wall simulating a leaking window. By injecting bulk water 

in the cavities of the walls to be tested, the ability of each 

wall section to cope with bulk moisture could be determined. 

For this study an updated approach was adopted, as the 

previous water injections typically showed that the majority 

of the water injected tended to run off the exterior face of 

the OSB or the WRB rather than being absorbed, effectively 

eliminating the point of the injections. The new walls still had 

water injected, however the locations and techniques were different. 

Figure 7. 
Typical Sensor Locations for the Test Wall 

Figure 8. Data Acquisition System 
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For the injections on the exterior of the OSB, a pocket made of Tyvek was sealed to the exterior face of 

the OSB with caulk and was filled with cotton. The cotton was used to help hold the water in the 

injection location and expose the OSB to moisture for a greater period of time facilitating its absorption. 

The top of the Tyvek pocket remained unsealed so the water was able to evaporate if not absorbed by 

the wall. The other injection location was on the interior face of the OSB at the intersection of the 

window sill plate and OSB. A notch was cut in the OSB at the injection location approximately half the 

thickness of the OSB. It is believed that the OSB was able to absorb more water if the surface finish was 

disturbed. Cotton was inserted into the slit to facilitate water absorption. A bead of caulk was installed 

on top of the window sill plate around the slit to ensure the water was not able to flow in any direction 

on the window sill plate away from the slit. A diagram of these designs can be seen in Figure 9 while 

Figure 10 shows the tubes. 

 
Figure 9. Setup of Wall Water Injection 

 

 

Figure 10. Water Injection Tubes in Test Walls 
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RESULTS AND DATA ANALYSIS 

The field test data was gathered over a 20-month period from November 1, 2013, through the end of 

June 2015. The field test data for both test huts were analyzed for moisture performance of test walls. 

Comparison analyses of specific walls were also conducted for the focused research area. 

Weather Conditions 

The 2014 winter was the coldest during the test period as it had the most heating days compared to 

other years and the normal winter average for the area (approximately 7 percent higher). The summer 

had 1,070 Cooling Degree Days (CDD), which was considerably lower than the historical average 

(ASHRAE 2009) with 42 inches total rainfall recorded (as shown in Table 3). 

Table 3. Weather Data 

 
Average 
Outdoor 

Temp 

Average 
Outdoor 

RH 

Heating 
Degree 

Days 

Colling 
Degree 

Days 
Rainfall 

Dec 2013 40.7 75 754 0 16.2 

Jan 2014 29.5 67 1101 0 2.4 

Feb 34.5 67 854 0 3.5 

Mar 40.1 64 773 0 9.9 

Apr 54.3 65 333 11 6.1 

May 65.9 72 62 90 4.4 

Jun 73.6 77 1 259 1.7 

Jul 75.5 77 0 325 3.6 

Aug 72.6 83 0 234 4.9 

Sep 68.4 84 31 133 1.1 

Oct 59.2 78 197 16 2.3 

Nov 44.8 65 607 1 2.8 

Dec 40.7 77 753 0 3.1 

Jan 2015 32.0 71 1022 0 4.7 

Feb 26.9 62 1066 0 12.7 

Mar 41.4 66 733 0 3.8 

Apr 56.3 63 266 6 3.4 

May 69.1 73 48 174 2.7 

Jun 74.0 83 19 288 8.0 

2015 Yearly Total (to date) 3154 468 35 

2014 Yearly Total 4713 1070 46 

2013 Yearly Total 3978 1203 52 

Andrews AFB Avg. 4421 1241 42 
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Figure 11 and Figure 12 show the indoor and outdoor field test conditions for the two test huts between 

November 2013 and June 2015. 

 

Figure 11. Measured Outdoor Conditions 

 

 

Figure 12. Measured Indoor Conditions 
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Incident Solar Radiation 

Figure 13 depicts solar radiation data measured on a horizontal surface and in the plane of the north- 

and south-facing walls. The figure shows that the radiation on the south-facing surface was at a 

maximum in the summer. The figure also indicates the north-facing walls received only a fraction of the 

radiation received by the south-facing walls; the north-facing walls appeared to receive only diffuse 

radiation and little or no direct radiation. This information is useful when trying to understand the solar 

intensity on the north and south walls throughout the year. Figure 13 also shows similar solar exposure 

for both structures. 

 

Figure 13. Measured Solar Radiation 

Moisture Content of OSB Sheathing for All Walls 

All Northern Exposure Walls 

Throughout the 20-month test period, sheathing for all north-facing walls on both Hut 1 and Hut 2 

remained below 25 percent MC, as shown in Figure 14. The following are general observations for all 

walls: 

 A positive vapor pressure difference indicates that the net vapor pressure drive is from the 

inside of the building outward. The actual MC measurements followed the vapor drive 

reasonably closely with a time lag in year 2 (2014 – 2015) which also had higher drive than 

year 1. 

 The sheathing of the following walls showed higher than 20 percent MC: stucco; manufactured 

stone; fiber cement; and brick, all with unfaced batts. 
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 The walls that had high MC between 18 and 25 percent in winter dried out quickly during 

summer to below 16 percent every year. 

 Two walls showed increasing peak MC values in year 2, which are higher than 20 percent. These 

two walls are: 2x6 vinyl wall with 2 cfm air leakage (Hut 1 - wall 4B); and 2x4 vinyl wall with PIC 

exterior insulation. 

 

Figure 14. North Wall Sheathing Moisture Content and Vapor Drive 

All Southern Exposure Walls 

Throughout the same monitoring period, sheathing for all south-facing walls on both Hut 1 and Hut 2 

remained below 24 percent MC, as shown in Figure 15. The following are general observations for all 

south walls: 

 Same patterns of vapor drive, MC measurements, and the relationship between them as north-

facing walls. 

 Sheathing MC levels for the majority of walls are much lower than their north-facing 

counterparts. This is due to the higher level of solar vapor drive for the southern orientation 

compared to the northern orientation. 

 The sheathing of two walls showed higher than 20 percent MC – the two stucco walls with 

unfaced batts (Hut 1 - walls 3A and 3B), one of which had a malfunctioning MC sensor in the 

second winter. These two walls dried out quickly during summer. 
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 Several walls showed increasing peak MC values in year 2, which were still lower than 

20 percent. This might have been caused by the more severe winter between 2014-2015. 

 The sheathing of the manufactured stone walls had a significant relative difference between the 

winter peak on the north and south walls. They peaked at 24 percent MC on the north walls, but 

17 percent on the south walls. This is attributed to the darker wall color, which made the 

surface absorb more solar radiation and heat on the south wall surface than the north wall 

surface. This consequently increased driving out of the moisture in the wall. 

 

Figure 15. South Wall Sheathing Moisture Content and Vapor Drive 

 

Comparison of Sheathing Moisture Content for Walls of Focused Study 

Four specific focused studies were described in the “Research Focus” section of this report. The 

following provides a comparison of the walls under each focused study to investigate impacts of 

different systems and techniques on the wall moisture performance. Due to a loss of the majority of 

sensors in Hut 1 test wall panels 1A and 1B, the performance of fiber cement walls (Hut 2 – walls 4A and 

4B) are used for baseline comparisons. 

1. OSB Moisture Content for Extended Plate and Beam (EP&B) Walls 

The advanced wall systems, EP&B with unfaced batts, had two variations tested – one with foam air 

sealing, the other without any air sealing. The air sealing was achieved by spray foam sealant between 

the 2x4 wood members and the exterior foam sheathing. Comparing with the baseline wall installed on 
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the same hut (Hut 2), the north-facing EP&B walls showed superior moisture performance (as shown in 

Figure 16) including the following observations: 

 The baseline fiber cement wall with unfaced batts showed winter peak MC of OSB sheathing 

close to 24 percent for two consecutive years. All the sheathing and stud MC measurements for 

both EP&B walls never exceeded 14 percent during the entire monitoring period. 

 The difference of sheathing MC between the sealed and unsealed EP&B walls are approximately 

2 to 3 percent indicating that the air sealing does not improve moisture performance of the 

EP&B walls. By design, these walls have excellent moisture performance due to the continuous 

foam board insulation on the interior side between the OSB and the studs. 

 In the EP&B walls with unfaced batts, the studs performed well. The studs in the EP&B wall with 

air sealing had the best moisture performance as shown by the dark green line in Figure 16. 

 

Figure 16. North Facing EP&B Wall Sheathing and Stud Moisture Content 

 
2. OSB Moisture Content for Air Leakage Versus Vapor Diffusion Walls 

There were four 2x6 walls installed in Hut 1 for different air sealing configurations – no air seal; fully air 

sealed; controlled air leakage of 1 cfm; and controlled air leakage of 2 cfm. The moisture performance 

for these walls showed significant insight to the importance of air sealing of wood-framed walls with 

vinyl siding, kraft-faced batt insulation, and drywall with one coat of primer and two coats of latex paint. 

The following are the observations from the field monitoring data shown in Figure 17 for the north-

facing walls: 
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 The best performing wall was the 2x6 wall that was fully air sealed. Its peak sheathing MC 

measurements were 16 and 17 percent for year 1 and year 2, respectively. It dried out during 

the summer quickly to below 13 percent. 

 The leakiest wall, the wall with 2 cfm controlled air leakage, demonstrated the highest winter 

peak MC in sheathing – 18 percent for year 1 and increased to 22 percent in year 2. The 

increasing winter peak sheathing MC for 2-3 months in year 2 is a performance concern even 

though it can dry out quickly during the summer. 

 The 1 cfm and unsealed walls performed very closely to each other and between the fully sealed 

wall and the leakiest wall. The winter peak sheathing MC values were 19 percent. 

 

Figure 17. North-Facing Sheathing Moisture Content for Walls with and without Air Leakage 

 
3. OSB Moisture Content for Walls with Exterior Insulation 

Four 2x4 vinyl sided walls with unfaced R13 fiberglass batts were installed with different exterior 

continuous insulation materials: EPS (expanded polystyrene); mineral wool (rockwool); polyisocyanurate 

(PIC); and XPS (extruded polystyrene). These four walls were compared with a 2x4 fiber cement-sided 

wall with no unfaced R13 and exterior insulation and the results are shown in Figure 18. The following 

are observations for the moisture performance of the north-facing walls: 

 All four walls with exterior insulation performed better than the wall with no exterior insulation, 

which had winter peak sheathing MC measurements close to 24 percent. 



December 2015  Home Innovation Research Labs 
20 Moisture Performance of Light-Frame Wood Wall Systems 

 Among the four walls with exterior insulation, the mineral wool wall performed the best. Its 

peak winter sheathing MC value was 16 percent for the year 1 and decreased to below 

15 percent for the more severe winter in year 2. 

 The wall with PIC insulation had the highest winter peak MC in sheathing – 20 percent in year 1 

and increased to 21 percent in year 2. This was caused by the low vapor permeance (as shown in 

Table 3) of the PIC material, which reduced the drying capacity of the wall during winter when 

the indoor moisture was driven to and accumulated on the sheathing surface. 

 The XPS and EPS walls performed very similarly. The peak winter sheathing values were 

between 18 and 19 percent. 

 

Figure 18. Sheathing Moisture Content for North-Facing Walls with Exterior Insulations 

 
4. OSB Moisture Content for Walls with Kraft-Faced Batt Insulations with Lower Indoor Relative 

Humidity 

The kraft facing on the insulation used in the wall cavity had significant impact on moisture performance 

as Figure 19 shows: 

 The 2x4 vinyl wall with unfaced batt insulation performed the worst. Its peak winter sheathing 

MC went up to 24 percent approaching the wood fiber saturation limit of 25 percent. 

 The 2x4 vinyl wall with kraft-faced batt insulation performed the best with sheathing MC never 

exceeding 15 percent, while the 2x6 vinyl wall with kraft-faced batts performed in between. 
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 All walls were able to dry out during the summer. The kraft facing on the batt insulation 

provided vapor resistance during the winter to prevent significant indoor moisture from 

transporting into the wall while allowing moisture flowing through during the summer into the 

conditioned space. 

 

Figure 19. Sheathing Moisture Content for Walls 
with and without Kraft Facing with Lower Indoor Relative Humidity 

 

Wall Cavity Temperature 

The following observations were made based on the field temperature data for all walls: 

 As expected, due to solar gains, wall cavity temperatures in south-facing walls were consistently 

warmer than in north-facing walls. The south-facing walls with stone and brick claddings had the 

highest year-round temperatures with the exception of the insulated siding in the winter 

months, as shown in Figure 20 and Figure 21. 

 The 2x6 walls with kraft-faced batt insulation and air sealing had the highest cavity temperature 

in the summer and lowest in the winter, as shown in Figure 22 and Figure 23. 

 In the cavity temperature charts for both northern and southern exposure walls, Figure 24 and 

Figure 25, the 2x4 walls with no exterior insulation showed lower winter values than those 2x4 

walls with exterior insulation. The thermal resistance of the exterior insulation causes the wall 

cavity to remain warmer in the winter. 
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Figure 20. Weekly Average Temperature for All Northern Exposure Walls 

 

 

Figure 21. Weekly Average Temperature for All Southern Exposure Walls 
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Figure 22. Weekly Average Temperature for Northern Exposure Walls with Air Leakage 

 

 

Figure 23. Weekly Average Temperature for Southern Exposure Walls with Air Leakage 
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Figure 24. Weekly Average Temperature for Northern Exposure Walls with Exterior Insulations 

 

 

Figure 25. Weekly Average Temperature for Southern Exposure Walls with Exterior Insulations 
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Bulk Moisture Injections 

Seasonal injections were performed in February, May, and August for six pairs of wall assemblies: 2x4 

wall with vinyl siding and unfaced batts; 2x4 wall with vinyl siding and kraft-faced batts; and the four 2x4 

vinyl siding walls insulated with cavity unfaced batts and exterior insulation. These four walls have EPS, 

XPS, PIC, and mineral wool (rockwool) exterior insulations. The water injection events raised the window 

sill MC instantly for all six walls, as shown in Figure 26 and Figure 27. There were periods of 

malfunctioning of a couple sill MC sensors for the north-facing 2x4 wall with vinyl siding and unfaced 

batts (yellow curve), and the north-facing 2x4 wall with rockwool exterior insulation (purple curve). Also 

during those periods not all sensors responded to water injections and some sensors showed no 

increase in MC, such as those in the south-facing XPS wall. 

The following observations can be made for the window sill MC based on the field data shown in 

Figure 26 and Figure 27: 

 For both north- and south-facing walls, the winter water injection events raised the window sill 

MC slightly over 30 percent. All south walls that experienced bulky water penetration in winter 

took less time (less than a month) than the north-facing walls to dry out below 20 percent. 

 Among all north-facing walls with exterior insulation, the ones with PIC and XPS exterior 

insulations took the longest amount of time in the winter to dry out to below 15percent, as 

Figure 25 shows. This is caused by the low water vapor permeance value of the PIC material. 

 At other times, the water injections raised window sill MC for all walls between 25 and 30 

percent. Due to higher temperature and vapor drive, the walls were able to dry out to below 

20 percent much more quickly compared to in the winter. 

Figure 28 and Figure 29 show the differential MC for the OSB sheathing at injection locations and the 

average OSB sheathing MC for the whole wall. After each water injection, the MC for the OSB sheathing 

of the window sill area where the injection occurred increased substantially compared to the whole wall 

OSB average MC. The following observations are made based on the field data shown in Figure 28 and 

Figure 29: 

 For north-facing walls, the winter injections can bring the MC of window sill OSB up to 

13 percent higher than that of the average wall OSB. The injections at other times raised the MC 

of the window sill OSB by 6 to7 percent. For the south-facing walls, the increase was up to 

19 percent in the winter, and 10-15 percent at other times. 

 The OSB at the window sill area for the PIC wall took the longest time to dry out the additional 

moisture. Also note that the sensor for the PIC wall on the OSB near the window sill did not 

function well during the first winter of the test period. The OSB MC sensor at the window sill 

location for the 2x4 wall with vinyl siding and kraft-faced batts did not function correctly either. 
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Figure 26. Daily Average Window Sill Moisture Content for Northern Exposure Walls with Water Injection 

 

 

Figure 27. Daily Average Window Sill Moisture Content for Southern Exposure Walls with Water Injection 
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Figure 28. Daily Average Sheathing Moisture Content Differential for Northern Exposure Walls 
with Water Injection 

 

 

Figure 29. Daily Average Sheathing Moisture Content Differential for Southern Exposure Walls 
with Water Injection 
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CONCLUSIONS 

Overall, during the 20-month monitoring period from November 2013 to June 2015, many test wall 

panels performed satisfactorily by maintaining wood sheathing MC levels below a generally acceptable 

level of 20 percent. However, the walls with stucco, brick, manufactured stone, and fiber cement siding 

showed MC increases in the sheathing to between 20 and 24 percent for at least one month in the 

winter. This might be caused by the lack of an interior vapor resistance layer when the unfaced batt 

insulation was used without extra vapor retarder. Further investigation is needed when the walls are 

torn down to check for mold growth. 

Both EP&B walls with and without air sealing by spray foam sealant used between the 2x4 wood 

members and foam sheathing never exceeded 14 percent MC in the exterior sheathing and studs for the 

whole field monitoring period; however, 2x4 wood-framed wall with unfaced batt insulation and fiber 

cement cladding showed peak MC of 24 percent in the wood sheathing. This demonstrates that the 

EP&B walls have adequate moisture performance due to the continuous rigid foam board insulation 

installed on the interior side of the OSB and the exterior side of the 2x4 wood members. 

The walls with intentional air leakage did show significant impact on the wall sheathing MC. The 2x6 

vinyl-sided wall with kraft-faced batt insulations having 2 cfm controlled air leakage from the room to 

the cavity showed over 20 percent winter peak MC in sheathing for an extended period. Therefore, air 

sealing to minimize air leakage through the wall system is important to achieve satisfactory moisture 

performance. 

The 2x4 vinyl-sided wall with unfaced batt and PIC exterior insulation also experienced high (over 

20 percent) winter peak MC in OSB sheathing. This was caused by the low water vapor permeance of the 

PIC material. Thus, choosing the exterior insulation materials with medium to high vapor permeance can 

significantly improve the moisture performance, as was demonstrated in the similar walls with 

rockwool, EPS, and XPS tested in this study. Another option may be replacing the unfaced batt insulation 

with kraft-faced batts to provide winter moisture resistance to keep the sheathing at a satisfactory MC 

level. 

Walls in this study, with unfaced batts, showed 24 percent MC in the sheathing at a lower indoor 

relative humidity level (30-60 percent) compared to the previous study (Home Innovation Research Labs 

2013 and Glass, et al. 2015), which maintained indoor relative humidity between 40 and 70 percent 

following ASHRAE Standard 160 simplified method. This study concluded that the combination of high 

indoor RH levels and high vapor permeance of painted gypsum board led to significant moisture 

accumulation in OSB sheathing during the winter in walls without a vapor retarder. 

Moisture injections on both exterior and interior surfaces of the sheathing showed that exterior 

insulation materials with medium to high water vapor permeance should be considered in order to 

allow for water that gets behind the cladding to readily dissipate, especially in the winter. Generally, the 

EPS, XPS, and mineral wool performed better than assemblies installed with PIC insulation, which has a 

substantially low vapor permeance. 
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