Cost-Saving Construction

Opportunities and the

HOME Program:

Making the Most of

HOME Funds

December 1994

U.S. Department of Housing and Urban Development
Community Planning and Development
Office of Affordable Housing Programs

HOME Model Series
Preface

Efforts to expand the supply of affordable housing under the HOME Program are constrained by the high cost of new construction and rehabilitation. There are many documented methods for helping to reduce costs in construction projects. Participating jurisdictions (PJs) in the HOME program can leverage available funding by taking advantage of available cost-saving building technologies and construction techniques to reduce the cost of new construction or rehabilitation.

This model identifies numerous cost-saving opportunities in residential construction, for potential inclusion in HOME activities. It is written for PJ directors and technical staffs, specialists in new construction and rehabilitation, nonprofit housing providers, private-sector builders and remodelers, and others providing services funded directly or indirectly through the HOME program.

Although the specific technologies and construction techniques discussed in this model have been used in many areas of this country, users are advised to consult with local building code authorities concerning the acceptability of specific practices in particular situations.
Contents

Introduction 1

Chapter One
Cost-Saving Technologies and the HOME Program 3

Chapter Two
Cost-Saving Building Technologies and Construction Techniques 7

Appendix
Checklist of Cost-Saving Opportunities 25

References 28
The high cost of new construction and rehabilitation work is a major obstacle to expanding the supply of affordable housing in the United States. The U.S. Department of Housing and Urban Development (HUD) has consistently supported efforts to reduce the cost of housing through research projects and field demonstrations, including Operation Breakthrough in the early 1970s and the Joint Venture for Affordable Housing in the 1980s. Other organizations dedicated to providing housing, such as the Enterprise Foundation, have also contributed to the understanding of cost-saving approaches in construction work.

The HOME Program, created under the National Affordable Housing Act of 1990, establishes a new national approach to increasing the supply of affordable housing. Jurisdictions that participate in the HOME Program have the opportunity to define local housing needs and channel available funds to meet those needs. Whether the focus is on multifamily rehabilitation, rental housing production, or first-time homebuyer assistance, the problem of high cost remains, and limits what can be accomplished with HOME funds. Jurisdictions that want to make the most of HOME financing need to take advantage of what has been learned about reducing costs in construction.

This model is intended to encourage more widespread use of available cost-saving technologies and construction techniques in projects receiving HOME funding—including both new construction and rehabilitation. Scores of cost-saving opportunities, including potential applicability and citations to sources for further information, are described. All of the cost-saving opportunities are of course not applicable in every project—many have the potential to reduce costs by large amounts per unit, but others will save only a few dollars. Regardless of the actual cost savings, every dollar of avoided costs helps available HOME funding go further. Keeping unit costs lower has other potential advantages under HOME, including:

- Reducing the amount of locally required matching funds;
- Helping to ensure compliance with maximum per-unit subsidies under 24 CFR section 92.250; and
- Limiting the extent to which properties are “substantially rehabilitated” at a cost in excess of $25,000 per unit, and therefore subject to special requirements under 24 CFR section 92.251(a).

Readers are encouraged to become familiar with the procedures discussed, and to promote their use, as appropriate, in each HOME-funded project in their jurisdiction.

Chapter One explains how to use this model, identifies other model HOME programs where this approach is relevant, and cites major publications and organizations where additional information on these and other cost-saving opportunities can be found.

Chapter Two includes general information about the development of cost-saving building technologies and construction techniques, and describes them by phase of construction as follows:

- Foundations;
- Framing;
- Alternatives to lumber and plywood;
- Electrical;
- Plumbing;
- Finishes and trim;
- Energy;
- Water service;
- Sewage disposal;
- Land planning; and
- Site development.

Code status, potential savings, graphics, and references are included for most techniques.

The Appendix presents a comprehensive matrix of cost-saving technologies, classifying each technology according to applicability for single-family homes.
multifamily homes, new construction, and rehabilitation. Technologies and methods described in Chapter Two are included in the matrix.

References include resources that can be easily accessed by participating jurisdiction (PJ) housing specialists and local contracting firms that bid on HOME projects.
Chapter One

COST-SAVING TECHNOLOGIES
AND THE HOME PROGRAM

This model is designed for use by any participating jurisdiction (PJ) in the HOME Program that is undertaking hard construction activity in single-family housing (one- to four-dwelling units) or low-rise multifamily units, supported in whole or in part by HOME funds. The model applies whether the HOME funding supports major or minor rehabilitation or new construction.

The only HOME-funded activities not covered by this model are projects that do not involve hard construction, such as programs focused exclusively on providing financing assistance to homebuyers or renters.

The model was designed to suggest methods that PJs can use to reduce the costs of rehabilitating existing housing units or to construct new units in the HOME program to increase the supply of affordable housing.

HOW TO USE THIS MODEL

An extensive list of cost-saving options that can be applied to one or more types of construction work, plus detailed information about some of the more important entries on the list is provided in this model. PJs should screen the list for ideas that can be applied to their local projects. The list can then be used by the PJ to develop specifications for work to be performed.

Copies of the model program should also be provided to local contracting firms that are developing detailed plans and specifications for any type of housing construction work, or are submitting bids on projects defined in general terms. Contractors should be encouraged to review the document and draw on as many ideas as possible to help minimize their costs. Sources for additional information are identified in the bibliography. In addition, a list of helpful organizations that can be consulted to resolve questions or uncertainties about the implications of particular suggestions is provided in the Appendix.

Regardless of who uses this model, the ultimate goal is the same—to take maximum advantage of opportunities to provide new or rehabilitated housing at the lowest cost consistent with health, safety, and good construction practices.

User feedback on the content and overall utility of this model is invited, and additional cost-saving suggestions are also welcome. The Office of Affordable Housing Programs will accept both.

RELATIONSHIP TO OTHER HOME MODELS

The cost-saving suggestions in this model are designed for use in conjunction with other HOME model programs, as well as similar projects undertaken by a PJ using HOME funds. HOME model programs that are suitable for use with this model include:

- From Rental Rehabilitation to the HOME Program;
- Owner-Occupied Rehabilitation;
- HOME Repair/Modification Programs for Elderly Homeowners;
- Multifamily Homeownership and the HOME Program; and
- Energy Conservation and Housing Rehabilitation Under the HOME Program.

The technical suggestions detailed in this model are potentially relevant to any project activity that involves physical construction, alteration, renovation, rehabilitation, or repair of housing, especially single-family and low-rise multifamily housing.
POTENTIAL CONCERNS IN THE USE OF THIS MODEL PROGRAM

Although the cost-saving suggestions in this model are supported by research and practical experience, they may not be appropriate in all situations. Local code requirements, lack of knowledge or experience on the part of the building trades, or perceived consumer resistance to nontraditional construction practices may limit the use of cost-saving alternatives in some projects. PJs may need to address these issues to realize the greatest cost savings from these opportunities.

Historically, code requirements have sometimes been viewed as a limiting factor in implementing innovative cost-saving practices. In recent years, however, significant progress has been made in updating major model codes and promoting consistency across the Nation. HOME Program regulations do not relax applicable regulatory requirements. Rather, in terms of general property standards, they require that:

- All projects assisted under HOME meet, at a minimum, the HUD Section 8 Housing Quality Standards (HQS) found in 24 CFR Section 882.109; and
- All new construction and substantial rehabilitation funded by HOME meet all applicable Federal, State, and local codes, rehabilitation standards, ordinances, and zoning ordinances.

HOME legislation and regulations also deal specifically with energy conservation features in assisted housing and require that:

- Newly constructed, HOME-funded housing meet the current edition of the CABO Model Energy Code that applies to housing insured by the Federal Housing Administration (FHA); and
- Housing that has been substantially rehabilitated with HOME funds meet the HUD Cost-Effective Energy Conservation and Effectiveness Standard (CEECS) found in 24 CFR Part 39.

Local rules determine when rehabilitation triggers the need to bring an entire structure up to current code requirements (which is typically a very costly undertaking). Rehabilitation standards are far more streamlined than code requirements for new construction. Thus, avoiding the need to bring an entire building up to new construction codes can result in major cost savings because building systems that are still functional may not need to be replaced. Ensuring that local standards for rehabilitation do not go significantly beyond the performance-oriented requirements of HUD HQS can also help keep costs under control.

Where the applicable code requirements contradict or do not specifically permit particular cost-saving suggestions, it may be possible to work with the local building department to secure waivers, variances, or determinations of "equivalency" that would permit their use. Reference to model code provisions that allow the item in question (even in codes that do not apply in the jurisdiction), as well as underlying research reports, may help to gain the support and approval of local building officials.

A second concern regarding the use of the cost-saving ideas presented in this model can result from lack of information on the part of the builders and subcontractors responsible for performing the work. Uncertainty about ultimate performance can be a serious deterrent to change. This concern applies primarily to the technically complex suggestions (e.g., frost-protected shallow foundations). In contrast, most of the suggestions presented in this model do not involve unfamiliar construction practices. They save money by simplifying the process. Where inadequate information or training is a problem, the logical solution is to provide easy access to materials that explain innovative construction methods in detail. This model gives the user references and citations to such materials, as appropriate.

The response of consumers is a third potential concern to the adoption and use of cost-saving practices such as those described in this model, particularly those that result in visible changes to the building. Successful experience with these practices has shown that consumer acceptance is not a serious obstacle as long as functional needs and expectations are met. Because the HOME Program focuses on increasing opportunities for homeownership and rental housing among low-income households, it is unlikely that marketing houses or apartments built or rehabilitated with HOME funding will be a problem. Most consum-
ers are delighted to have access to homes or apartments they can afford, rather than remaining in unsafe or dilapidated living conditions.
Chapter Two

COST-SAVING BUILDING TECHNOLOGIES
AND CONSTRUCTION TECHNIQUES

The cost-saving construction methods presented in this model are technically oriented, and focus on the design and construction of particular features in and around the home. They can be generally classified into basic suggestions that:

■ Substitute materials that are less expensive to purchase and/or install than more common alternatives. Examples include use of less expensive sheathing products, plastic plumbing products instead of copper, and corrugated stainless steel gas pipe instead of black iron pipe;

■ Involve more innovative alternative products that simplify overall construction, such as mechanical plumbing vents in lieu of through-the-roof vent pipes, or frost-protected shallow foundation systems instead of deep footings in cold climates;

■ Save money by eliminating overdesigned or unnecessary features, including 24-inch stud spacing rather than 16-inch, 2 x 3 studs instead of 2 x 4s in nonbearing walls, and reduced plumbing vent pipe sizes; and

■ Focus on residential land planning and land development, such as increased density, clustered development, reduced street widths, and elimination or simplification of technically questionable development requirements.

DESCRIPTION OF TECHNOLOGIES
AND TECHNIQUES

Detailed descriptions of the cost-saving technologies and techniques are organized by phase of construction or building system.

Resources for further information are cited for each method. Publications that are available from HUD USER are noted first, followed by other easily located references. HUD USER makes printed copies of recently published materials from the U.S. Department of Housing and Urban Development available, and provides reference specialists to help access the information requested. Call 1-800-245-2691 or 301-251-5154, or write HUD USER, P.O. Box 6091, Rockville, MD 20850. Organizations that may be able to provide additional assistance or information are also listed.

Although the cost-saving suggestions described in this chapter are widely recognized, they are not universally accepted by building code officials. Entries include information about the acceptability of individual suggestions under the major U.S. model codes, which include the CABO One- and Two-Family Dwelling Code, the series of codes published by Building Official Code Administrators International, Inc., Southern Building Code Congress International and International Conference of Building Officials, and the National Electrical Code. Applicable codes should be reviewed with appropriate local officials before introducing new methods into the construction or rehabilitation of any building.

FOUNDATIONS

Foundations typically consist of a concrete block or poured concrete wall placed on top of a concrete spread footing that rests on the soil. They are designed to support all building loads safely, and are located at a depth that is sufficient to prevent frost heave. New methods and materials that achieve these design objectives have been gaining popularity as cost-saving alternatives to the more traditional approaches. Methods and materials that offer potential savings are discussed below.

Monolithic Slab-on-Grade Foundation

The number of steps involved in foundation construction can be reduced by using a monolithic slab-on-grade foundation design. A monolithic slab-on-grade
installation consolidates the operations of casting a separate footing and pouring a floor slab. This both reduces labor, and also cuts the time required to build a typical slab-on-grade foundation by 1 to 2 days. All model codes allow monolithic slabs. (Figure 1)

Figure 1. Monolithic Slab-on-Grade Foundation

![Figure 1](image)

Refs: CABO, *One and Two Family Dwelling Code* (1992); and *Home Building Cost Cuts*, HUD.

Stemwall Foundation

A stemwall foundation adapts the monolithic slab-on-grade concept to homes built on basement or crawlspace foundations. It offers similar advantages. The stemwall design allows for safe distribution of building loads directly from a concrete wall to the soil without the need for a separate spread footing. Stemwall foundations may require engineering analysis for code approval. Stemwall foundation design for a crawlspace is shown in Figure 2.

Frost-Protected Shallow Foundation

A frost-protected shallow foundation (FPSF) makes it possible to build slab-on-grade foundations that are as shallow as 16 inches, even in areas where the frost depth is 5 feet or more. Use of the FPSF technique saves trenching costs, concrete, and time when compared with a traditional deep foundation. This type of foundation is particularly useful in tight areas where deep excavations are impractical or impossible because of proximity to another building or a property line.

FPSFs can be built successfully at shallow depths because they use insulation to retain heat from inside the building, which keeps the perimeter of the building warm and effectively raises the frost line. Exterior insulation must be placed vertically along the foundation on all FPSFs. In extremely cold climates, additional horizontal insulation is required to extend outward from the bottom of the footing for 1 to 2 feet. The insulation required for frost protection also increases the energy efficiency. FPSFs may require engineering analysis for code approval. (Figure 3)
FRAMING

Framing offers some of the best opportunities to reduce costs during rehabilitation and new construction. Considerable effort has been directed at value-engineering residential framing. Although much of this work took place in the 1970s under HUD’s Operation Breakthrough and similar programs, the increasing and highly volatile costs of lumber and plywood make suggestions for reducing framing expenses relevant today. Examples of some of the most widely used cost-saving methods are discussed below. See the section entitled Alternatives to Lumber and Plywood for additional suggestions.

Use of Optimum Value-Engineered (OVE) Framing

The OVE design and construction system was developed in the 1970s to increase the efficiency of lumber use in home building. OVE in-line framing is an important part of the OVE approach. (Figure 4) With in-line framing, all floor, wall, and roof framing is spaced identically so the respective structural members bear the load directly over each other. Thus, loads from the roof and walls are transferred directly through the lower members to the foundation. The result is a more efficient structure and a reduction in or elimination of some of the framing members used to distribute the load. In high wind or seismic areas, be sure to check with local code officials to determine whether this technique is appropriate before deviating from approved framing practices.

The most economical spacing for structural members using the OVE method is 2 feet, compared with traditional 16-inch spacing. Descriptions of this and other OVE techniques follow. (Figure 4)

Increased Spacing of Framing Members

Conventional framing typically uses members spaced 16 inches on center. It is widely recognized, however, that 24-inch on-center stud, joist, and truss spacings are acceptable for structural purposes. Perhaps the most broadly applicable of these measures is 24-inch spacing of 2 x 4 partition wall studs. All major U.S. model codes also permit 24-inch spacing for 2 x 4 studs in bearing walls in all one-story applications, and for the top story of multiple story homes. Where 2 x 6 studs are used, they can be spaced at 24 inches for both one- and two-story homes.

Increased spacing both saves framing lumber, and improves energy efficiency because it increases the proportion of overall wall area that can contain cavity insulation. (Figure 4)

Eliminate Unnecessary Framing

Over the years, residential framing methods have evolved based largely on tradition. As a result, unnecessary framing members have found their way into conventional practice. For example, model codes now recognize:

- Mid-height fire blocking can be eliminated in walls;

Ref: Alternatives to Lumber and Plywood in Home Construction, (Appendix), HUD; Affordable Housing Challenge and Response, Vol. 2, HUD; and Home Building Cost Cuts, HUD.
Floor bridging is unnecessary for joists sized at 2 x 12 or less;

- Structural headers (e.g., double 2 x 6s, 2 x 8s, or 2 x 10s) are not needed in openings in nonbearing walls and partitions (a flat 2 x 4 can be used in the opening as a nailing surface);
- A single top plate is sufficient in nonbearing partition walls, as well as in bearing walls if in-line framing is used;
- Ceiling heights can be reduced to 7' 6" to save both materials and labor; and
- Traditional three-stud corners can be replaced with two-stud corners in all applications, with metal drywall clips (instead of a third stud) used to fasten the interior wall surface. (Figure 5)

Savings From the Use of OVE Techniques

Most builders in the Joint Venture for Affordable Housing used OVE techniques. Their cost-savings are documented in Affordable Housing Challenge and Response, Vol. 2, HUD, pp. 43-52.

Structural Wall Sheathing Only for Required Bracing

To resist wind-induced “racking” forces, exterior walls of homes have historically been covered with plywood or 1” board sheathing. More recently, the major U.S. model codes have recognized that bracing installed in corners effectively resists the loads on homes less than three stories in height. In walls more than 25 feet in length, an additional intermediate section of wall should also be braced. In seismic zones 3 and 4, additional sheathing or bracing is required for multi-story buildings.

Corner bracing can consist of a 4-foot section of structural sheathing (e.g., plywood), 1” x 4” diagonal let-in braces, or approved metal straps. Where plywood or Oriented Strand Board (OSB) corners are used, the rest of the wall can be covered with a less expensive material of equivalent thickness, such as insulation board. (Figure 6)
2 x 3 Partition Studs

The most common type of wall stud used for interior partition framing is the 2x4. By substituting 2 x 3 studs for interior nonbearing partitions, material costs can be reduced without sacrificing structural integrity. The 2 x 3 studs can even be placed at 24" on center. This practice is acceptable under all the model codes.

For additional information, see Alternatives to Lumber and Plywood in Home Construction, HUD; The Cost Cuts Manual, Enterprise Foundation; and Cost-Effective Home Building, NAHB Research Center.

Prefabrciated Wall Panels

Stick-built on-site construction is the predominant approach to building homes in the United States. In some cases, however, it is more cost-effective to purchase wall panels that are manufactured off-site and delivered to the building site. Use of prefabricated wall panels can shorten the construction schedule and reduce related carrying costs (interest on construction funds). Wall panels are available from a variety of panel manufacturers and truss manufacturers in two basic types—closed-wall and open-wall.

In closed-wall panels, utilities, insulation, drywall, and sheathing all are installed by the panel manufacturer at the factory. Exterior and interior finishes must be protected from damage and moisture during transportation to the site. Closed wall panels typically require an implant inspection by a State-recognized third party agency.

In open-wall panels, wall studs and exterior sheathing are installed in the plant, but plumbing, electrical, and mechanical equipment may be installed at the plant or on site, which makes site inspection easy. Drywall, insulation, and other finish materials are generally installed on site. Open-wall panels are less vulnerable to damage during transportation than closed panels, and are used in all areas of the United States.

Alternatives to Lumber and Plywood

Although wood continues to be one of the most cost-effective building materials, recent rising and unstable prices have increased the pressure for alternative materials. Many options currently exist, but their competitiveness depends on several variables including local labor rates and availability. Following are examples of products that could offer a competitive advantage over lumber or plywood.

OSB or Laminated Fiberboard Structural Sheathing

For decades, plywood has been the exterior wall covering of choice for most builders because of its strength and relative low cost. As plywood and lumber prices have risen, however, more and more builders have begun to use Oriented Strand Board (OSB) or laminated fiberboard. Although these products are less expensive than plywood, the resistance to change that new products often encounter has limited their use to some degree.

OSB is an engineered wood product made from small strands of wood blended with a resin and oriented in layers. It is widely available in 4' x 8' sheets, and can be used for floor, roof, and wall sheathing. OSB is recognized in all the major model U.S. codes. Its installation is identical to plywood.

Laminated fiberboard structural sheathing is made from wood byproducts. It is produced in panel form. These products typically consist of fibrous plies laminated under pressure and covered with foil or polyethylene. Although not specifically addressed in most codes, several manufacturers have obtained evaluation reports on their products from the Council of American Building Officials and the International Conference of Building Officials. These listing reports are usually sufficient to gain local approval.

For more information on engineered wood products, contact the American Forest and Paper Association, 1111 19th Street NW, Washington DC 20036, (202)463-2700. Also see, Alternatives to Lumber and Plywood, HUD.
Plastic or Wood-Plastic Lumber

Trim, decking, fences, and other finish items account for a substantial percentage of the wood used in residential construction. Plastic-based products are beginning to see more use for these types of nonstructural applications. Products in this category include 100 percent plastic lumber and newer products that are composed of 50 percent plastic and 50 percent wood. (These latter products often incorporate recycled consumer plastics and wood scraps.) See Alternatives to Lumber and Plywood in Home Construction, HUD, for additional information on this subject.

Steel Framing

In some regions of the United States, steel has always been competitive with wood for interior partition framing. Most drywall contractors are familiar with steel partitions because they are widely used in commercial construction. Recently, an increasing number of home builders have begun to use steel for load-bearing applications. Manufacturers offer steel as a stick-for-stick replacement for individual wood members, or as a panelized system. Like nearly all wood alternatives, the cost-effectiveness of steel for structural components such as floors, walls, and roofs depends on availability and local labor and material costs.

All major U.S. model building codes permit the use of steel both for partition studs and use in load-bearing applications—provided that the plans are designed and certified by a competent professional in accordance with code-approved standards. Many steel manufacturers supply design assistance along with their product.

Some construction details that must be addressed with steel framing include the need for special fasteners (screws instead of nails), and the need for insulating grommets to protect electrical wiring from damage and to prevent direct contact between copper water pipes and steel studs. (Figure 7) For more information on steel framing for home construction, contact the American Iron and Steel Institute (AISI), 1101 17th Street N.W., Washington, D.C. 20036, (202)452-7100.

ELECTRICAL

Electrical installations are typically governed by provisions of the National Electrical Code or similar local codes. Even within these stringent codes, however, there are ways to reduce costs using low-cost products that meet the intent of the code. Examples of cost-saving techniques and materials that have been widely accepted are discussed below.

Surface-Mount Electrical Conduit and Behind-Baseboard Installation

Traditional methods for installing electrical wiring inside walls work well with new construction, but this approach is much more difficult and costly in rehabilitation work. Surface-mount electrical conduit and behind-baseboard installations are two alternative approaches.
Surface-mount conduit is fairly well known, but behind-baseboard, or baseboard raceway systems, are likely to be more acceptable to occupants. An example of this type of system is a plastic baseboard that has a hollow space to fish electrical wiring through. Some systems have multiple raceways built into the baseboard so that a number of cables can be routed through the system. Both surface-mount and behind-baseboard systems are recognized and governed by provisions in the National Electrical Code.

Install Fewer Electrical Outlets in Existing Buildings

Although the National Electrical Code and other major codes generally require that there be an electrical outlet within 6 feet of any section of wall, other codes and guidelines have relaxed this requirement for rehabilitation projects. For example, under HUD Rehabilitation Guidelines, three outlets in kitchens and two in all other rooms is an acceptable minimum, which is consistent with requirements in the HUD Section 8 HQS, and the BOCA National Code for Existing Structures. Similar examples include standards for ground fault circuit interrupters, light fixtures, and switched outlets.

For more specific information on this subject refer to Rehabilitation Guidelines, HUD; and The Cost Cuts Manual, Enterprise Foundation.

PLUMBING

For years, plumbers have followed numerous rules of thumb which, although based on years of practical experience, do not apply to many of today's plumbing materials. Research that supports the newer cost-effective approaches has begun to find its way into the U.S. model codes. For example, the plumbing provisions in the CABO One and Two Family Dwelling Code were completely revised in the mid-1980s to reflect the latest research results. Cost-saving items that have recently evolved in the plumbing area are discussed below.

Mechanical Plumbing Vents

Traditionally, plumbing vents are installed for each fixture and extend up through the roof. The introduction of mechanical vents has eliminated this need, instead allowing the vent to terminate just above the fixture. These devices are useful in situations where it is difficult to install vents for fixtures—they can eliminate the need to open additional walls and floors in a rehabilitation project. Mechanical vents are accepted in most major plumbing codes and are available through plumbing supply and building supply stores. (Figure 8)
Direct Venting of Drain-Waste-Vent (DWV) Pipes

Like mechanical plumbing vents, direct venting is useful when it is difficult or costly to install a traditional "through-the-roof" plumbing vent. Direct vents are plumbing vents that terminate through a wall directly to the exterior. (They are sometimes called "sidewall vents" or "through-the-wall vents.") Before installing a sidewall vent, check to ensure that no nearby openings would allow sewer gas to reenter the building. Some of the more progressive U.S. codes (e.g., the CABO One- and Two-Family Dwelling Code) permit sidewall vents, however, requirements on where they can terminate vary from code to code.

Refer to The Cost Cuts Manual, Enterprise Foundation, for additional information.

Stack or Wet Venting of Drain-Waste-Vent Pipe

Stack and wet venting of DWV pipe minimize the amount of total pipe in the plumbing system by reducing the requirement for a separate vent for each fixture. For example, where plumbing fixtures on one floor are located above or below fixtures on another floor, both may be vented through the same pipe. In many circumstances the waste line for upper story fixtures can also serve as the vent for the lower story fixtures. Each of these situations reduces the amount of piping when compared with more traditional methods that rely on a separate vent for each fixture or for each story. Both methods are allowed under the CABO, One- and Two-Family Dwelling Code (Figure 9).

Savings from Cluster Plumbing

A builder in Valdosta, GA, redesigned house plans to cluster plumbing and, thereby, reduce both DWV piping and water supply piping. The resulting cost savings averaged $400 per home. (1985) (Affordable Housing Challenge and Response, Vol. 2, HUD, pp. 58-66)

Pipe Materials

In most major model codes, acceptable water service pipe materials include polyvinyl chloride (PVC), chlorinated polyvinyl chloride (CPVC), polybutylene, polyethylene, and other plastics that are often less costly than copper pipe. For example, polybutylene plastic pipe, a flexible pipe that requires fewer fittings than rigid pipe, is
Savings from Use of Alternate Pipe Materials

Polybutylene supply pipe was used instead of copper in a Phoenix, AZ, subdivision. As a result, plumbing costs were reduced by $65 per unit. (1985) (Affordable Housing Challenge and Response, Vol. 2 HUD, pp. 58-66) Field studies have shown 30 to 50 percent savings when flexible polybutylene supply piping is substituted for rigid pipe materials. (1987) (Affordable Housing Challenge and Response, Vol. 2, pp. 58-66)

Ref: The Cost Cuts Manual, Enterprise Foundation; and Home-Building Cost Cuts, HUD.

FINISHES AND TRIM

The finish stages of construction offer additional opportunities for cost savings in both new construction and rehabilitation projects. Although many of the suggestions provided here are not new or innovative, they are included because they are cost-saving alternatives to existing methods and materials.

Eliminate Window Trim

Window trim can be eliminated in homes by returning drywall to the face of the window. Although eliminating window trim in this manner is an acceptable cost-saving alternative and raises no code issues, the drywall finisher must pay more attention to detail than when trim is installed. (Figure 10)

Gypsum Laminate (Cover)

When traditional methods are used to repair badly cracked plaster during rehabilitation, complete sections of plaster are removed and replaced with new plaster sections. This is a time-consuming, costly procedure. In many cases, an alternative approach is to install gypsum board over the existing wall, which eliminates the need to work with plaster. Typically, a 1/4 inch gypsum panel is adequate. This repair method is acceptable under model codes.

Refer to The Cost Cuts Manual, Enterprise Foundation, for more specific information.

Open Kitchen and Bathroom Shelves

Open shelves in the bathrooms and kitchens, instead of typical cabinets and vanities, provide needed storage space at lower costs. Moreover, some homeowners can also install these types of shelves themselves, which would eliminate labor costs altogether. Cabinets can be installed later as homeowner resources allow. Open shelving is acceptable under model codes.

Savings from Use of Open Shelving

Traditional hanging cabinets cost more than 3-1/2 times the cost of stained, polyurethaned plywood shelving. Further, owners can install shelving and eliminate carpentry and other labor costs. (The Cost Cuts Manual, pp. 4-108 to 4-115)

Eliminate Partitions

It may not be necessary to replace nonload-bearing partitions removed during rehabilitation, especially with the recent emphasis on open interiors. For further information refer to The Cost Cuts Manual, Enterprise Foundation.

ENERGY

The HOME program includes specific energy-efficiency requirements for both new construction and substantial rehabilitation. All new construction must comply with the current edition of the CABO Model Energy Code (MEC) applicable to FHA-insured housing (as of October 1993 this is the 1992 CABO MEC). All substantially rehabilitated units must comply with the HUD Cost-Effective Energy Conservation and Effectiveness Standards (CEECS) in 24 CFR Part 39.

An explanation of the CEECS and examples of their application to single-family and multifamily rehabilitation work appear in Applying the Cost-Effective Energy Standards in Rehabilitation Projects, available from HUD USER. This section presents several cost-saving approaches for complying with the CABO MEC in new construction.

Blown-In Insulation Instead of Batt Insulation

MEC currently requires that ceilings have at least R-19 insulation in the mildest climates, increasing to R-38 insulation at 6,000 heating degree days and above. Batt or blown-in insulation can be used to comply this code. In general, the installed cost of blown-in insulation is lower than batt insulation for any given R-value—one study found that blown-in insulation costs were 20 to 25 percent lower than costs for batt insulation.

Reduce Window Areas Where Possible

Because wall requirements are based on the average performance of the entire wall, including windows, and because even the best windows do not insulate as well as a stud wall with cavity insulation, compliance with the wall requirements of MEC becomes easier when window area is reduced. Building codes typically require that every habitable room in a home have windows in an amount that is not less than 8 percent of the floor area; minimum sizes are also required for egress. These minimums are usually exceeded in new construction. Windows cost more than walls, thus, reducing window area to the lowest amount consistent with marketability saves money even without an energy code. But reducing window area also can allow lower levels of wall insulation, or permit the use of less expensive windows with lower resistance to heat flow, while still complying with the MEC.

Savings from Reducing Window Areas

A double-glazed metal window loses heat roughly 12 times faster than an R-20 wall.

Vinyl Windows Instead of Wood Windows

Wood windows are used in some areas, in part because they have better thermal performance than windows with metal frames. Depending on the climate and window area, some houses will need high-performing windows to comply with the MEC.

Vinyl-framed windows are an increasingly popular alternative that perform comparably to wood windows in energy terms, at a significantly lower purchase and installation cost. In addition, vinyl windows do not require periodic repainting.

Foam Wall Sheathing Instead of Structural Sheathing

In some situations, compliance with the wall requirements in MEC can be difficult with 2 x 4 walls, yet there may be resistance to using 2 x 6 construction. Insulated sheathing products with
higher resistance to heat flow can be substituted for wood-based structural sheathing (except for required corner and intermediate wall bracing). Increases in the prices of wood products make insulated sheathing price competitive, and its superior thermal performance simplifies compliance with the MEC—1/2-inch plywood has an insulating value of R-0.62, while 1/2 inch of foam sheathing has an insulating value of R-2.5 to R-3.6, depending on the type of foam.

Refer to *Applying the Cost-Effective Energy Standards in Rehabilitation Projects*, HUD, for further information on this subject.

Flame-Resistant Batt or Blanket Insulation on Basement Walls

Compliance with the basement wall insulation requirements of MEC can be accomplished with R-11 insulation in areas that have up to 8,500 heating degree days. Building an extra frame wall around the perimeter of the basement to hold the insulation and finishing the interior with drywall is an expensive alternative, but is not required by the MEC or the model codes.

A low-cost alternative is to attach R-11 batts or blankets with a low flame-spread rating (25 or less) to 2 x 2 nails on the floor joists over the basement, and at the bottom to 2 x 2 nails low on the basement wall. Extra-wide (4 foot) batts with foil or other flame-resistant facing are available for this purpose. (Figure 11)

WATER SERVICE

Insulating utilities, both main lines and service laterals, offers significant opportunities to reduce new construction costs. To a lesser extent, the opportunity also exists to reduce rehabilitation costs when underground utilities must be upgraded or replaced. Areas related to water supply that should be considered are discussed below.
SEWAGE DISPOSAL

Cost-saving technologies can be used for both publicly sewered property and for homes served by individual on-site waste treatment and disposal systems. Although the latest sewage disposal technologies are mainly intended for new construction, several also have rehabilitation potential, particularly on-site disposal methods. New sewage technologies can often be applied to older buildings that have failing septic systems. In fact, these methods may be the only economically sound way to rehabilitate the property.

Common Lateral Sewer Pipes

Many communities require that every home have a separate lateral sewer pipe that connects to the main sewer pipe. A common or shared lateral sewer pipe, sized to handle the required flow, can be used to serve several homes. Common lateral sewer pipes are installed as shown in Figure 12. Refer to Model Land Development Standards, HUD, for further information on this subject.

Sand Mound Septic System

In areas where the groundwater table is elevated, where there is a shallow barrier below the soil, or where soils are slowly permeable, a conventional septic system is not suitable for wastewater disposal. Many jurisdictions do not permit new systems in these sites, which effectively reduces the land available for housing. When older, existing systems in areas with poor soil conditions fail they must be replaced with properly operating systems.

One solution in these areas is to install a sand mound or mound system. A mound system is a drainfield that is installed in a mound above the natural lot elevation on a suitable fill, usually a medium textured sand. Sand mound system design criteria are available from a variety of sources, including the U.S. Environmental Protection Agency (EPA). Mound systems designed to meet EPA guidelines are currently approved in many States. (Figure 14)
Recirculating Sand Filter Septic Systems

In many unsewered areas, conventional septic systems are unacceptable because of slowly permeable soils. Land on these soils is, therefore, deemed "nonbuildable." Furthermore, many rehabilitation projects are severely limited in existing homes in these areas because of restrictions on the amount of living space; i.e., system expansion is not permitted because the sewerage from a larger home might exceed the capacity of a system that is already failing. Recirculating sand filter systems can be used in areas with slowly permeable soil, and also provide higher quality effluent.

Although a recirculating sand filter contains many of the features of a conventional septic system, it also has a sand filter installed between the septic tank and the drainfield. Wastewater is spray-applied to the filter and then recirculated several times back to the septic tank, or to a separate holding tank.

Wastewater effluent from a sand filter system is of higher quality than septic tank effluent. The higher quality increases the "acceptance rate" of the soil by a factor as high as 7 to 8. This translates into a smaller drainfield, and means that smaller lots can be served by a sand filter system than by a conventional septic system.

Although they have been shown to work effectively, circulating sand filters are not yet widely recognized. Thus, local health officials should be consulted before using this type of system. Design guidelines for sand filter systems have been produced by the U.S. Environmental Protection Agency. (Figure 15)

LAND PLANNING AND DENSITY

The rising cost of developing residential lots is the single most important reason for the increased price of homes. Zoning requirements, land development standards, environmental policies, and infrastructure regulations—mostly under local control—all contribute to the high costs of lots.

Local zoning ordinances largely determine the amount of land available for residential development. Areas that are zoned for residential use are assigned maximum housing densities—the maximum number of dwelling units permitted per acre. Obviously, the more homes allowed on each
acre of land, the lower the per-lot cost, and the lower the house sales price. Restrictive zoning that requires low density, excessive house frontage and deep setbacks, large lots, and an abundance of open space leaves less land for homes. Inadequate supply of land to meet the demand increases the price of homes.

Many zoning ordinances restrict or prohibit higher density and the resulting smaller lots. But communities that have increased density limits and thus reduced the minimum lot size have demonstrated that smaller lot, higher density developments can be attractive, desirable, and affordable. Land development costs—for streets, stormwater control, utilities, and so forth—are also lower for smaller lots. It is difficult to change zoning ordinances, however, certain exceptions to density restrictions sometimes exist for affordable housing.

Small Lot Districts

Small lots are often allowed within areas already controlled by planned unit development (PUD), planned residential development (PRD), community unit plan (CUP), and comprehensive residential development (CRD) ordinances. PUDs, etc., typically allow for reducing lot size without increasing the overall density within the development. The number of homes in the development is averaged across the entire development tract instead of measured on a per-lot basis, as in traditional zoning.

The smaller than normal lots are typically “clustered” around a common area—a court, cul-de-sac, parking, or an amenity—and the remaining area is left undeveloped. Smaller, clustered lots have lower overall site development costs, benefit from open space within the development, and, when designed under a PUD-type ordinance, maintain the zoned density. PUDs usually incorporate a variety of single-family and multi-family housing types. Setbacks, frontages, floor/area ratio, space between units, and other site requirements are usually flexible. Land development standards are typically less stringent and performance based in these developments. (Figure 16)

Setback Requirements

Reduction of the generally arbitrarily determined minimum front yard, side yard, and rear yard setbacks as well as space between units, can save land costs as well as utility and infrastructure costs. Large setbacks from all boundaries place the house near the center of the lot and reduce its usability. Using the “zero-lot-line” technique, homes can be located on one or more lot-lines, creating a single, usable yard area rather than two narrow unusable sideyards. To ease privacy concerns, walls that are located on the lot lines may be required to be windowless, with a small easement granted for maintenance. (Figure 17)
SITE DEVELOPMENT

Two costs are associated with developing a site for housing—the cost of purchasing "raw" or undeveloped land and cost of improving or developing that land. Not only have the costs of raw lots increased, but so also have land development costs, largely as a result of excessive local requirements, i.e., wide streets and rights-of-way, and overdesigned water and utility supply systems.

Housing density also effects land development costs—the higher the number of homes per acre, the greater the number of homes to share land development costs. For example, land development costs per home are less for 100 homes built on a 10-acre tract than for 40 homes on the same tract. Smaller lots also reduce the linear footage of curbs, gutters, and utilities required for each house.

The HUD publication, *Proposed Model Land Development Standards and Accompanying Model State Legislation*, offers minimum design and construction standards for residential land development designed for safe, livable, affordable residential housing. Some subjects addressed in these Model Standards follow.

Density

As discussed above, in areas where homes are built closer together (higher density) and on smaller lots, land development costs are lower than in areas of lower density and larger lots. First, smaller homes have, for example, less street frontage, shorter utility lines, and less stormwater runoff. Second, land development costs in more dense subdivisions are distributed among a greater number of homes than in a less dense development. (Figure 18)

Savings from Higher-Density Developments

In a 1986 study of an actual subdivision in Canton, Ohio, total land development costs were $5,735,647 or $12,151 per unit using a conventional plan concept, and $3,751,927 total or $8,045 per unit using a cluster (or higher density) plan. (Cost Effective Site Planning, NAHB, pp. 113-120.)
Rights-of-Way (ROW)

Rights-of-way are land areas set aside for streets, shoulders, swales, curbs, and gutters. When land was less costly, communities required excessive rights-of-way—as much as 20 feet beyond the street. The Proposed Model Land Development Standards recommend minimum widths of 1 foot beyond the street, for curbs and utilities, if required.

Utilities such as water, sewer, and electrical service can be installed in easements instead of rights-of-way. Easements grant passage through and/or use of privately owned property. Homeowners own the easement land. The jurisdiction determines the conditions for its use. The use of easements instead of rights-of-way makes more land available for housing. (Figure 19)

Figure 19. Rights-of-Way

Savings from Reduced Rights-of Way

A 50-foot ROW for a 26-foot-wide street uses almost twice as much land for streets, utilities, and sidewalks as does an easement. That additional land could be used for additional house lots. Land development costs would be spread over more units, reducing the per unit cost. (Affordable Housing: Development Guidelines, HUD, pp. 61-63.)

Ref: Proposed Model Land Development Standards, HUD.

Streets

Streets are often overdesigned because codes rely on standards developed for highways. But residential streets differ from highways. Highways are designed to expedite traffic and limit access. Residential streets are designed to provide safe, efficient access for vehicles, bicycles, and pedestrians. Residential streets should not be designed for speed. Wide, straight streets encourage speeding and serve as pass-throughs for nonresidents.

The Proposed Model Land Development Standards referenced above, recommend carefully researched minimum standards for street design and construction that will reduce costs in areas with excessive street standards. These standards are based on a hierarchy of street types based on their function. (Table 1)

Table 1. Design Parameters

<table>
<thead>
<tr>
<th>Street Type</th>
<th>Maximum Volume</th>
<th>Maximum Design Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major collector</td>
<td>3,000 +</td>
<td>30 mph</td>
</tr>
<tr>
<td>Collector</td>
<td>1,000-3,000</td>
<td>30 mph</td>
</tr>
<tr>
<td>Sub collector</td>
<td>250-1,000</td>
<td>25 mph</td>
</tr>
<tr>
<td>Access</td>
<td>0-250</td>
<td>20 mph</td>
</tr>
</tbody>
</table>

Turnarounds and Cul-De-Sacs

Like streets, excessively large paved “turnarounds” are expensive to construct, use valuable land, and add needlessly to stormwater runoff. Although many communities require that cul-de-sacs have a radius of 50 to 60 feet, 30 feet has proven adequate. T-turnarounds and other alternatives may also decrease paved areas and require less land, resulting in reduced per-unit land development costs. (Figure 20)
Asphalt or crushed rock are acceptable alternatives to driveways made out of concrete, which is provided to serve more than one house. Driveways may be designed as two wheel paths or ribbon strips instead of solid, full width concrete pads. Each of these methods of driveway design and construction reduces development costs when compared with typical construction. A side benefit of crushed rock or ribbon driveways is that more water will penetrate the soil than when concrete is used. For additional information on this subject, refer to Residential Streets, NAHB.

Stormwater Management

The traditional approach to stormwater management has been to move accumulated stormwater runoff from the development through a complex system of curbs, gutters, and underground piping—a system that is expensive to build and often causes flooding downstream. Newer methods contain the runoff onsite through absorption or retention, thereby allowing the water to drain through the soil and recharge the groundwater supply.

Grassy swales and shoulders, depressed areas running parallel to the street, can be substituted for curbs and gutters in many developments at less cost and more benefit to the environment as well. Open drainage systems cost less overall than typically closed systems and are environmentally preferable. (Figure 21)

Sidewalks

Sidewalks can be constructed on one side rather than both sides of local streets, and eliminated entirely on lightly traveled streets, dead-end streets, and cul-de-sacs. Further, sidewalks can be replaced by pathways installed where they will be used—linking housing clusters, stores, playgrounds, bus stops, and other community facilities. Less costly gravel or asphalt can be used for sidewalks or pathways instead of concrete. For additional information, refer to Model Land Development Standards, HUD.

Driveways

Asphalt or crushed rock are acceptable alternatives to driveways made out of concrete, which is much more costly. Common driveways may be
This Appendix presents an extensive, systematic listing of cost-saving opportunities, including those discussed in Chapter Two. Each line entry represents one suggestion, which is briefly described in the left-hand column. The columns indicate whether the suggestion is suitable for single-family or multifamily homes (or both), and whether it is applicable in new construction or rehabilitation (or both).

Line entries are grouped into categories according to the phase of construction or building system to which they apply, such as “Planning,” “Foundations,” and “Framing.” Entries marked with an asterisk are some of the more widely used or recognized items and are discussed in more detail in Chapter Two.

<table>
<thead>
<tr>
<th>METHOD OR MATERIAL</th>
<th>REHAB.</th>
<th>NEW CONSTRUCTION</th>
<th>SINGLE-FAMILY</th>
<th>MULTI-FAMILY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leave unfinished areas for future expansion</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>* Use prefabricated wall panels instead of site-built walls</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Elminate roof overhang and rake ends</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>* Plan open shelves and pantries instead of kitchen cabinets</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Orient building for winter solar gains where site allows</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Elminate front and rear parapets instead of repairing them</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Reduce or eliminate use of gutters and downspouts</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Use fire escape or ladders to provide second means of emergency egress</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Use sprinklers to reduce fire rating of protective openings in a rated wall assembly</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Foundations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use monolithic slab-on-grade instead of conventional slab</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>* Use stemwall foundations instead of separate footers</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Use insulated basement wall forms for poured walls</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Use permanent wood foundations in cold climates</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Reduce sill plate size to 2 x 4</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Use insulated concrete block systems</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>* Install frost protected shallow foundations</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Reduce footing size based on soil-bearing capacity</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Use footer blocks instead of poured footings</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Framing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use 24-inch on center stud, joist, and truss spacing instead of 16-inch</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Use 7-foot 6-inch ceiling heights instead of 8-foot</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>* Use corner bracing only to reduce amount of exterior sheathing</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Use 1-inch band joist rather than 2-inch</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>* Reduce sill plate size to 2 x 4</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Eliminate floor cross-bridging</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>METHOD OR MATERIAL</td>
<td>REHAB.</td>
<td>NEW CONSTRUCTION</td>
<td>SINGLE-FAMILY</td>
<td>MULTI-FAMILY</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>-----------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Eliminate double joints under nonbearing partitions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use single-layer T&G glue-nailed subfloor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use two-stud corners instead of three-stud corners</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eliminate mid-height fire blocking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Eliminate headers in openings in nonbearing walls and partitions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use single top plates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use 2 x 3 partition wall studs instead of 2 x 4s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use plywood box headers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use off-center spliced joists</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eliminate band joist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use 1 x bottom plates for inline framed exterior walls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use 1 x top and bottom partition plates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternatives to Lumber and Plywood</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use OSB, laminated fiberboard structural sheathing, or</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>let-in bracing in place of plywood</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use wood I-beams at 24-inch o.c. for floor joists</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Steel partition framing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Steel load-bearing framing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foam core panels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulated concrete wall forms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welded wire sandwich panels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulated concrete block systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Plastic or wood-plastic lumber for nonstructural use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use flat floor trusses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Replace sheathing and corner bracing with single layer plywood siding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use plastic electric receptacle boxes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use surface mount electrical conduit or behind baseboard raceway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Allow smaller number of electrical outlets for existing buildings than for new buildings (minimum 2 per room; 3 in kitchen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumbing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use mechanical plumbing vents instead of through-the-roof vents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use direct venting of drain-waste-vent (DWV) plumbing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use plastic DWV and water pipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use stack-venting or wet-venting of DWV pipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish/Trim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Eliminate window trim by returning and finishing drywall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Gypsum laminate (cover) over badly cracked plaster instead of replacing or repairing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Eliminate partitions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Open shelves instead of cabinets in kitchens and bathrooms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Service</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use common lateral water pipes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use a common trench for utilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduce pipe size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sewage Disposal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use plastic sewer pipe rather than concrete or metal pipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use common lateral sewer pipes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use sand mound septic systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

26—Cost-Saving Construction Opportunities and the HOME Program
<table>
<thead>
<tr>
<th>METHOD OR MATERIAL</th>
<th>REHAB.</th>
<th>NEW CONSTRUCTION</th>
<th>SINGLE-FAMILY</th>
<th>MULTI-FAMILY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use evaporation and absorption beds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use small diameter gravity sewers with individual septic tanks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use septic tank effluent pump system (pressure system)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use vacuum sewers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use recirculating sand filter septic system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Planning and Density</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Cluster homes in higher density without changing overall density</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Reduce house setbacks, frontage, floor/area ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Reduce lot size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Include variety of housing types</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Take advantage of nontraditional zoning to increase density</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Reduce (one side only) or eliminate sidewalks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Reduce width of sidewalks to 3-foot maximum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Limit right-of-way widths to minimum needed for street and maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Place sidewalks and utilities in easements rather than in right-of-way</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Reduce radius of bulb cul-de-sacs; use T-, hammerhead-, or island-turnarounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduce size of curb and gutter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use swales rather than curbs and gutters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Reduce street widths according to function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use asphalt or crushed rock for driveways rather than concrete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use common driveways or parking areas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use rolled or mountable curbs instead of vertical curbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use integral curbs (combined sidewalks and curbs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use an alley to provide parking or driveway on narrow lots</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use gravel or asphalt walkways instead of concrete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use ribbon strips (wheel paths) instead of solid full-width driveways</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduce thickness of concrete walks to 2 1/2 inches</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use paths instead of street sidewalks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use blown-in insulation instead of batts for ceilings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Reduce window areas where possible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use vinyl windows instead of wood windows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use foam wall sheathing instead of structural sheathing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use flame-resistant batt or blanket insulation on basement walls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use "component performance" rather than "acceptable practice" to comply with MEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References

ANNOTATED BIBLIOGRAPHY

The following publications are available from HUD USER, the clearinghouse for U.S. Department of Housing and Urban Development (HUD) publications. Most are available for a $4.00 handling charge (no cost to U.S. Department of Housing and Urban Development offices). Charges for out-of-print publications and unpublished reports may be more. For a complete publications list or to order publications listed below, contact:

HUD USER
P.O. Box 6091
Rockville, MD 20850
1-800-245-2691 or 301-251-5154

Affordable Housing Challenge and Response:

Volume 1: Affordable Residential Land Development, HUD #5039 $4.00

Volume 2: Affordable Residential Construction, HUD #5051 $4.00

Presents findings of HUD-sponsored Joint Venture for Affordable Housing (JVAH), a program designed to demonstrate cost-saving techniques in actual subdivisions nationwide. The publication includes all phases of housing production: land planning, site layout, land development, on-site infrastructure installation, and house construction. Illustrations and documented cost-savings accompany the text.

Affordable Housing: Development Guidelines for State and Local Government, HUD #5940 $4.00

Presents technical guidance and information to State and local governments to reform their regulatory systems to encourage provision of affordable housing. Focuses on land development techniques, construction practices and building codes, zoning provisions, and subdivision requirements and offers suggested ordinances and code language.

Alternatives to Lumber and Plywood in Home Construction, HUD #6135 $4.00

Identifies several alternative materials or building systems that can be used in residential construction under most current building codes, as well as emerging technologies that will be commercially available in the near future.

Applying Cost Effective Energy Conservation Standards (CEECS) in Rehabilitation Projects, HUD #2778 $10.00 (reproduction copy)

Energy conservation measures that may/must be undertaken during residential rehabilitation. Describes standards and discusses their use in single- and multifamily buildings.

Energy Conservation for Housing, HUD #2651 $25.00

A workbook designed to assess existing energy consumption and energy conservation potential in public housing. Applicable to all multifamily housing. Useful for energy audits.

Energy Conservation and Housing Rehabilitation Under the HOME Program, The American Communities Information Center, P.O. Box 7189, Gaithersburg MD 20898-7189, 1-800-998-9999.

Frost-Protected Shallow Foundations in Residential Construction—Phase I, HUD #6143 (unpublished report) $15.00

Presents an investigation and demonstration of frost-protected shallow foundations in homes, including cost-effectiveness of the technology and design and construction guidance for builders, designers, and code officials.

28—Cost-Saving Construction Opportunities and the HOME Program
Home Building Cost Cuts: Construction Methods and Materials for Affordable Housing, HUD #2930 $4.00

Loose-leaf bulletins documenting cost-effective techniques in residential design, materials research and usage, and construction methods.

Housing Quality Standards (HQS) (two video tapes), HUD #5353 $60.00

Provides training for public housing agency staff, housing managers, and inspectors in Housing Quality Standards (HQS) of the Section 8 Existing Housing Program to provide affordable housing for low-income families. (All units, new or rehabilitated, must meet the HQS before occupancy.)

Innovative Site Utilities, HUD #3159 (reproduction copy) $10.00

Identifies and describes both practical and innovative cost-saving methods and materials that are being used across the country to reduce site utility costs for residential development.

Making Rental Housing Energy Efficient: Guide to Performing Energy Retrofit During Multifamily Property Rehabilitation, HUD #5650 $4.00

Model Energy Code Compliance Procedures (MECCP) Version 1.0, HUD #5904 $20.00

Computer software package and accompanying user guide automates procedures for determining if a building design meets the provisions of the model energy code (MEC).

Proposed Model Land Development Standards and Accompanying Model State Enabling Legislation, HUD #6212 $4.00

Presents detailed minimum standards and specifications that can be incorporated into local development ordinances. Includes streets, stormwater management, sediment and erosion control, site utilities, sanitary sewage, water supply standards, and model enabling legislation. Illustrated.

Presents design, performance, and results of three sand filter demonstration sites.

Rehabilitation Guidelines

An 11-volume set addressing upgrade and conservation of nation's building stock. The following volumes include cost-saving techniques that can be applied during rehabilitation.

Volume 6: Electrical Guidelines for Residential Rehabilitation, HUD #50788 $4.00

Volume 7: Plumbing DWV Guideline for Residential Rehabilitation, HUD #50789 $4.00

Volume 9: Guideline for Structural Assessment, HUD #2958 $4.00

Volume 10: Guideline for Rehabilitation of Walls, Windows, and Roofs, HUD #2959 $4.00

Stemwall Foundations for Residential Construction, HUD #6134 (unpublished report) $10.00

Addresses design and demonstration of monolithic stemwall foundations for basement, split-level, and crawlspace homes.

The following publications provide additional information on cost-saving technologies for affordable housing that have been discussed in this HOME model program. They are readily available from the noted sources.

Affordable Single-Family Housing—A Review of Development Standards, American Planning Association (APA), 1984, #PAS 385, $30.00

Discusses land-use strategies for affordable housing and their effectiveness in 13 communities. Includes parking, outdoor space, and privacy issues. Available from:

American Planning Association
Planners Bookstore
1313 E. 60th Street
Chicago, IL 60637-2891
312-955-9100

Automated Builder Dictionary/Encyclopedia of Industrialized Housing, Don O. Olson, editor, 1991, $15.00

Provides a comprehensive introduction to industrialized housing (panelized, modular, and HUD-Code units). Includes definitions, materials, tools, engineering principles, unit designs and components, and production processes. Available from:
Model Energy Code: Thermal Envelope Compliance Guide for One and Two Family Dwellings, North American Insulation Manufacturers' Association, November 1993, #B1407, $10.00
Presents easy-to-use energy application and trade-off worksheets, with expected performance of numerous component constructions to enable users to determine MEC compliance. Includes discussions of energy use, materials selection, and building design. Available from:

North American Insulation Manufacturers Association
44 Canal Center Plaza Suite 310
Alexandria, VA 22314
703-684-0084

Presents resourceful, effective approaches to low-cost rehabilitation that can be used by public and private sectors. Includes acquiring property cheaply, designing-out unneeded rehab, construction methods and materials, efficient management, and labor-saving methods. The Enterprise Foundation also produces loose-leaf style Cost Cuts tips several times annually to provide additional information on reducing construction costs in low-income housing and rehabilitation. Available from:

The Enterprise Foundation Rehab Work Group
500 American City Building
Columbia, MD 21044
301-964-1230

Presents Optimum Value Engineering (OVE) approach to design and construction. Includes revised strength and span lumber tables, metric conversions, and new technologies. Available from:

NAHB Research Center
400 Prince Georges Blvd.
Upper Marlboro, MD 20772
301-249-4000

Discusses making higher density housing fit any community. Includes sample site plans and solutions for problems caused by increased density. Available from:

Home Builders Bookstore
National Association of Home Builders
1201 15th Street NW
Washington, DC 20005
1-800-223-2665 or 202-822-0463

Design Manual, On-site Wastewater Treatment and Disposal Systems, U.S. Environmental Protection Agency (EPA), 1980
Provides technical information on on-site wastewater treatment and disposal systems. It does not include standards, rules, or regulations regarding the systems. Available from:

National Small Flows Clearinghouse
(pub. #WWBKDM35 $31.30)
West Virginia University
P.O. Box 6064
Morgantown, WV 26506-6064
1-800-624-8301

Focuses on structural elements and mechanical elements that conserve energy. Topics range from energy-efficient walls, and windows to high performance heating systems and energy-conserving appliances. Available from:

National Technical Information Service
(#DE89009468 $27.00)
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

30—Cost-Saving Construction Opportunities and the HOME Program
Land-Use Regulations Handbook, National Institute of Building Sciences, 1990, #5063-4, $10.00
Presents land-use guidelines for affordable housing including strategies for zoning, density, and land development. Includes appendix of basic terminology and processes used in land development regulation. Available from:
National Institute of Building Sciences (NIBS)
1201 L Street NW
Washington, DC 20005

PUDs in Practice, Urban Land Institute (ULI), 1985, #P36, $36.00
Discusses design and regulatory elements of planned unit developments (PUDs), including PUD ordinance language, development process, and review and approval process. Illustrated by five case studies. Available from:
Urban Land Institute—Publication Orders
625 Indiana Avenue, NW
Washington, DC 20004-2930
1-800-321-5011 or 202-624-7142

Residential Streets, 2nd edition, American Society of Civil Engineers (ASCE), Urban Land Institute (ULI), and National Association of Home Builders (NAHB), 1990
Differentiates street types by function and recommends design and construction guidelines. Available from:
Urban Land Institute #R07 $23.00
625 Indiana Avenue, NW
Washington, DC 20004-2930
or
1201 15th Street NW
Washington, DC 20005

Small Wastewater Systems—Alternative Systems for Small Communities and Rural Areas, EPA. (pamphlet) Available from:
Small Flows Clearinghouse (#WWBLPE02 Free) or
National Center for Environmental Publications and Information (NCEPI) Free
11029 Kenwood Road
Cincinnati, OH 45242
513-891-6561

Truss-Framed Construction, NAHB Research Center and U.S. Forest Products Laboratory, 1982, $5.00.
Covers essentials of technique that integrates roof trusses, floor trusses, and wall studs into unified frames. Includes design, fabrication, and erection. Available from NAHB Research Center.

Publications and other documents produced by various U.S. government departments/agencies can be located through the following sources:
National Center for Environmental Publications and Information (NCEPI)
Dissemination center for all EPA publications. Call 513-569-6685.

National Technical Information Service (NTIS)
Dissemination of government technical publications. Provides subject bibliography and price list, fills publications orders:
National Technical Information Service (NTIS)
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
703-487-4650

FED WORLD
On-line publication service for NTIS
Call 703-321-8020
Via internet telenet Fedworld.Gov

Government Printing Office (GPO)
Call 202-783-3238 to locate library in your area that is a full depository of GPO documents. Orders can be placed through:
Superintendent of Documents
U.S. Government Printing Office
Washington, DC 20402-9325
202-783-3238
MODEL BUILDING CODES

Council of American Building Officials (CABO)

CABO is the umbrella organization for the three major nationally recognized model code organizations and consolidates their efforts on matters of mutual concern:

- The Building Officials & Code Administrators International (BOCA) publishes the BOCA Basic/National Code, generally used in the Northeast and Midwest.
- The International Conference of Building Officials (ICBO) publishes the Uniform Code, generally used in the South.
- The Southern Building Code Congress International (SBCCI) publishes the Standard Code, used mostly west of the Mississippi.

The CABO One-and-Two-Family Dwelling Code is a major CABO activity. All three model code organizations recognize this code, accepted as a suitable replacement for the HUD Minimum Property Standards for One- and Two-Family Dwellings (MPS).

The Model Energy Code (MEC) is another CABO document published jointly by the three model code organizations.

National Fire Protection Association (NFPA)

NFPA publishes the National Electrical Code (NEC).

Code organizations can be contacted as follows:

Building Officials and Code Administrators
4051 West Flossmoor Road
Country Club Hills, IL 60477
1-800-323-1103 or 312-799-2300

Council of American Building Officials
5203 Leesburg Pike, Suite 708
Falls Church, VA 22041
703-931-4533

International Conference of Building Officials
5360 South Workman Mill Road
Whittier, CA 90691
1-800-423-6587 or 213-699-0541

National Fire Protection Association
Batterymarch Park
Quincy, MA 02269-9990
1-800-344-3555 or 617-770-3500

Southern Building Code Congress International, Inc.
900 Montclair Road
Birmingham, AL 35213-1206
1-800-633-3876 or 205-591-1853
HELPFUL ORGANIZATIONS

The following organizations may be able to assist in locating materials on a specific subject. Most have publication lists available on request.

American Forest and Paper Association
1111 19th Street NW, 8th Floor
Washington, DC 20036
202-463-2700

American Institute of Architects
1735 New York Avenue NW
Washington, DC 20036
202-626-7300

American Iron and Steel Institute
1133 15th Street NW
Washington, DC 20005
202-452-7100

American Planning Association
1313 E. 60th Street
Chicago, IL 60637-2891
312-955-9100

Building Systems Council
1201 15th Street NW
Washington, DC 20005
202-822-0576

Enterprise Foundation/Rehab Work Group
500 American City Building
Columbia, MD 21044
410-964-1230
Attn: Communications/Public Affairs Office

National Association of Home Builders
1201 15th Street NW
Washington, DC 20005
202-822-0200

NAHB Research Center
400 Prince Georges Blvd
Upper Marlboro, MD 20772
301-249-4000

National Small Flows Clearinghouse
West Virginia University
P.O. Box 6064
Morgantown, WV 26506-6064
1-800-624-8301

North American Insulation Manufacturers Association
44 Canal Center Plaza Suite 310
Alexandria, VA 22314
703-684-0084

Urban Land Institute
625 Indiana Avenue NW
Washington, DC 20004-2930
1-800-321-5011 or 202-624-7000